Finding areas under the normal

A linear function of a normal random variable is also normally distributed. In general if (as in p. 24):

$$
x=\mu+\epsilon \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

then,

$$
x-\mu=\epsilon \quad \Rightarrow x-\mu \sim N\left(0, \sigma^{2}\right)
$$

and finally,

$$
\frac{x-\mu}{\sigma}=\frac{\epsilon}{\sigma} \quad \Rightarrow \frac{x-\mu}{\sigma} \sim N(0,1)
$$

which represents deviations from mean in units of standard deviation.

Example

Suppose X is normally distributed with mean 10 , and variance 25 , that is,

$$
X \sim N(10,25)
$$

Then, what is the probability

$$
P(12 \leq X \leq 15)=?
$$

Given the mean and the variance Excel calculates this probability using the command normdist (X , mean, st $\operatorname{dev}, 1$). In this case the whole command will be:

$$
=\text { normdist }(15,10,5,1) \text {-normdist }(12,10,5,1)
$$

Kadd (the Excel add-in) has a Probability command that calculates this probability by specifying the mean, the standard deviation, and the interval (12-15).

You can verify this using a table for the stardard normal and calculating the following probability:

$$
\begin{aligned}
P(12 \leq X \leq 15) & =P\left(\frac{12-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{15-\mu}{\sigma}\right) \\
& =P\left(\frac{12-10}{5} \leq Z \leq \frac{15-10}{5}\right) \\
& =P(0.4 \leq Z \leq 1) \\
& =P(0 \leq Z \leq 1)-P(0 \leq Z \leq 0.4) \\
& =0.3413-0.1554 \\
& =0.1859
\end{aligned}
$$

which graphically can be represented as follows:

Area under the Normal Distribution

Probability	$=0.1859$
Mean $=$	10
Standard Deviation $=$	5
Left X-value $=$	12
Right X-value $=$	15

