The Binomial distribution

A random variable x has a binomial distribution if its probability distribution is given by:

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

where

$$
\begin{aligned}
f(x)= & \text { probability of } x \text { successes in } n \text { trials } \\
\binom{n}{x}=\frac{n!}{x!(n-x)!}= & \text { the number of possible outcomes resulting } \\
& \text { in } x \text { successes in } n \text { trials } \\
p= & \text { the probability of success in any trial } \\
(1-p)= & \text { the probability of failure in any trial }
\end{aligned}
$$

Illustration

Suppose the Nice Clothing Store would like to estimate the probability that out of the next 4 customers (trials), 3 make a purchase (success), when the manager knows that the probability of a purchase by a single customer is 0.20 .

Basically the problem consists of finding the probability of 3 successes out of 4 trials, that is:

$$
\begin{aligned}
f(3) & =\binom{4}{3} p^{3}(1-p)^{(4-3)} \\
& =4 p^{3}(1-p) \\
& =4\left(0.20^{3}\right)(0.80) \\
& =4(0.0064) \\
& =0.0256
\end{aligned}
$$

given that the number of possible outcomes with 3 successes in 4 trials is:

$$
\binom{n}{x}=\frac{n!}{x!(n-x)!}=\frac{4!}{3!(4-3)!}=\frac{4!}{3!1!}=4
$$

Reference: Anderson, D.R., D.J. Sweeny, and T.A. Williams (1999): Statistics for Business and Economics. South-Western.

